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1. Introduction

In this paper, following recent work of [1 – 3], we explore a special limit of semiclassical

string states in AdS5 × S5 and dual gauge theory states in which one of the charges (one

spin J in S5) is much larger than all others. The energy (dimension) E diverges with J

while their difference stays finite. This limit appears to bring in remarkable simplifications,

and thus its study may help to further clarify the structure of the string/gauge spectrum

of states.
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If we consider for definiteness the SU(2) sector or string states on R×S3 parametrized

by the two angular momenta J1, J2, then the limit we are interested in is, say, J2 À J1 and

E − J2 = f(J1, λ) + O( 1
J2

) (λ is the ‘t Hooft coupling or the square of the string tension).

In the semiclassical approximation one assumes that λ À 1 while Ji = Ji√
λ

are fixed.

Taking this limit for a few known classical spinning string solutions [4 – 6] one finds that

E − J2 takes a simple “square root” form, and the analytic form of the solution simplifies.

This turns out to be not accidental, as these states may be considered as bound states of

“giant magnons” whose momentum is fixed in the large spin limit [2, 3]. Furthermore, their

“square root” dispersion relation appears to be exact in λ, being protected by a residual

supersymmetry in this limit [1, 2].

One of our aims below will be to confirm this explicitly by a 1-loop AdS5 × S5 super-

string theory computation. This is a non-trivial check as the presence and implications of

the SU(2|2) × SU(2|2) (centrally extended) supersymmetry [1, 2] was not yet established

directly at the level of the superstring action of [7]. We shall also supplement this by an

analysis of the corresponding limit of the gauge/string Bethe equations of [8 – 10].

On the dual spin chain side this large spin limit corresponds to the large spin chain

length J = J1 + J2, and the states for which E − J is fixed for J → ∞ are in the

“intermediate” part of the spin chain spectrum. For example, at the leading 1-loop order

in λ the spin chain spectrum has the following structure in the J → ∞ limit [11] (the

structure of the spectrum at finite λ is expected to be qualitatively similar): it starts with

the ferromagnetic vacuum (BPS state) with E − J = 0, on top of which come magnon

states with E − J ∼ λ
J2 + O( 1

J3 ) dual to BMN states, then come low-energy spin wave

states with E−J ∼ λ
J +O( 1

J2 ) [12] dual to spinning strings [13, 5, 14], then “intermediate”

states with E−J ∼ λ+O( 1
J ) and finally the spinons and the top-energy antiferromagnetic

state with E − J ∼ λJ + O(1).1

While the momenta for standard magnon states, p ∼ n
J scale to zero with J → ∞, the

momenta of special elementary “giant magnon” states, a finite number of which are used

to construct physical Bethe states in the “intermediate” part of the spectrum, are fixed in

the large length limit. The same applies to the states in the near-antiferromagnetic region

which are built out of an order J number of magnons. Indeed, the same limit was previously

considered in [16] and, in particular, in [17 – 19] in connection with the antiferromagnetic

state of the spin chain. The string solution counterpart of the antiferromagnetic state was

found in [20].

Below in section 2 we shall describe the large spin limit of several classical string

solutions on S3 in S5 (with the corresponding states belonging to the SU(2) sector of

the spin chain). One of them will be new — the second-spin generalization of the “giant

magnon” of [2] (independently found recently in [21]) while two others will be special cases

of the known solution – the folded spinning string of [6, 15] and the circular string of [5, 22].

In all of these cases we shall find that the expression for the classical energy simplifies in

1The “microscopic” magnon states correspond to J2 À J1 with J1 being finite; the “thermodynamic”

limit which was used in [12, 15] to isolate the semiclassical spin wave states assumed that both J1 and J2 are

large but their ratio J1/J2 (or “filling fraction”) is fixed. The present thermodynamic limit for semiclassical

states corresponds to J2 → ∞ with 1 ¿ J1 ¿ J2.

– 2 –
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the limit J2 → ∞ and takes the universal form

E − J2 =
√

J2
1 + λk2 , (1.1)

where k is a constant depending on a particular solution. The same applies also to the

circular (S, J) solution of [22] from the SL(2) sector as we discuss in appendix B.

There are indications based on residual supersymmetry [2, 3] suggesting that semiclas-

sical string solutions obtained in the above limit represent BPS states and thus their energy

formula should not receive string α′ ∼ 1√
λ

corrections. In section 3 we shall compute the

1-loop string correction to the energies of folded and circular string solutions in the large

J2 limit using the methods of [13, 23]. On general grounds, the classical energy (1.1) of a

classical solution may receive 1-loop string corrections of the form E1 = E1(J1), J1 = J1√
λ
.

We find that the 1-loop correction to the energy indeed vanishes in the J2 → ∞, J1 =fixed

limit due to a nontrivial cancellation between the contributions of the bosonic and fermionic

fluctuation modes. This suggests (like in the near-geodesic or plane-wave cases, cf. [24 –

26]), that here the superstring action expanded near the large-spin classical solution has

a hidden world-sheet supersymmetry (a remnant of target-space supersymmetry after κ-

symmetry gauge fixing), but so far it has not identified explicitly.2

In section 4 we shall return to the discussion of the large spin limit at the classical string

level and present the general analysis of it using the integral equation [8] for the finite gap

solutions of the string sigma model on S3. We shall then comment on the infinite length

limit in the general Bethe ansatz equations on the gauge [9] and the string [10, 27, 28] sides

and argue that they become the same in this limit, i.e. the “dressing factor” decouples.

In appendix A we discuss some technical details of the computation of 1-loop correction

to the energy of 2-spin folded string solution in the SU(2) sector.

The same large spin limit applies also to other sectors of states and we illustrate this on

the example of the SL(2) sector in appendices B and C and pulsating solutions in section

4.4. In appendix C we also consider giant magnons in the SL(2) sector. It turns out that

these magnons have infinite E − J as well as an infinite Lorentz spin S. This is caused

by the string reaching the boundary of AdS5. We show that there is a regularization that

gives a finite answer and give a possible interpretation for this on the gauge side.

2One of the solutions for which we shall compute the 1-loop string correction will be the J1 = 0

case of the J2 → ∞ limit of the folded string solution of [6], which is the same as the extremal limit

of the single-spin folded string solution of [4]. Its classical energy E − J2 = 2
√

λ

π
may be viewed as a

J1 → 0 limit of E − J2 =
q

J2
1 + 4λ

π2 describing bound state of 2 giant magnons with spin [3]. In fact,

the corresponding quantum state from the SU(2) sector (i.e. the one dual to the BMN-type operator

Tr(Z . . . ZWZ . . . ZW . . .) should have J1 = 2, not 0. At the level of the classical solution (obtained within

the semiclassical expansion with λ À 1 and Ji = Ji√
λ

fixed) one cannot of course distinguish between the

J1 = 0 and J1 = 2 (or J1 =any finite number) cases, but one may question what happens at the quantum

level. Assuming that the relation E − J2 =
q

J2
1 + 4λ

π2 is exact and setting there J1 = 2 we finish with

E − J2 = 2
q

1 + λ

π2 = 2
√

λ

π
+ 0 − π√

λ
− π3

4(
√

λ)3
+ · · ·. The absence of the 1-loop order (

√
λ)0 correction to

the J1 = 0 solution is thus also consistent with this exact square root formula.

– 3 –
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2. Large spin limit of classical string solutions on R × S3

In this section we shall describe several classical string solutions in the infinite spin limit.

We shall consider strings moving in S3 part of S5 in AdS5 × S5

ds2 = −dt2 + dθ2 + cos2 θ dϕ2
1 + sin2 θ dϕ2

2 . (2.1)

In general, a rigid rotating string configuration that we are interested in may be described

as a solution of Nambu action in a “static” gauge

t = τ , θ = θ(σ) , ϕ1 = w1t + ϕ̃1(σ) , ϕ2 = w2t + ϕ̃2(σ) , (2.2)

and thus carries the energy E and two angular momenta Ji ∼ wi.

2.1 “Giant magnons” with spin

The “giant magnon” solution considered in [2] was an open string with ends moving on a

big circle3 which had J1 = 0, E, J2 → ∞ with E − J2 =
√

λ
π cos θ0=finite. Here we shall

generalize it to the case of finite non-zero J1, reproducing the energy formula first obtained

on the spin chain side as the energy relation for a bound state of J1 giant magnons in [3]4

E − J2 =

√

J2
1 +

λ

π2
sin2 p

2
, sin

p

2
≡ cos θ0 . (2.3)

The same classical solution was independently found in [21] using a relation to the sine-

Gordon model.5 Setting

w1 = w , w2 = 1 , ϕ̃1 = −wψ(σ) , ϕ̃2 = ϕ(σ) , (2.4)

the Lagrangian L of the Nambu-Goto action S =
∫

dτL is then determined to be

L =

√
λ

2π

∫

dσ
√
D , (2.5)

where

D = (ṫ2 − cos2 θϕ̇2
1 − sin2 θϕ̇2

2)[(∂σθ)2 + cos2 θ (∂σϕ1)
2 + sin2 θ(∂σϕ2)

2]

+ (cos2 θ ϕ̇1∂σϕ1 + sin2 θϕ̇2∂σϕ2)
2

or, explicitly,

D = sin2 θ(∂σϕ)2 + w2 cos2 θ(∂σψ)2 + (1−w2) cos2 θ(∂σθ)2 −w2 sin2 θ cos2 θ (∂σϕ + ∂σψ)2 .

(2.6)

3This solution is a also special case of string with spikes [29] on S5 [30, 31].
4We interchange notation for J1 and J2 compared to [3].
5In conformal gauge, it can also be obtained as a solution of the generalized integrable Neumann model

[32].
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Varying L with respect to ψ, we find the equation

∂

∂σ

(− cos4 θ∂σψ + sin2 θ cos2 θ∂σϕ√
D

)

= 0 , (2.7)

which clearly has

∂σψ = tan2 θ ∂σϕ (2.8)

as a special solution. Substituting (2.8) back into the action, we find the reduced action

that determines the expression for θ as a function of ϕ

L =

√
1 − w2

√
λ

2π

∫

dϕ
√

r2 + r′2 , r ≡ sin θ, r′ ≡ dr

dϕ
. (2.9)

Except for the extra
√

1 − w2 prefactor, eq. (2.9) is the same expression found in [2]; we

thus get a “minimal” generalization of the “giant magnon” to the case of w ∼ J1 non-zero.

The explicit form of the solution for θ is thus the same as in [2]

r = sin θ =
sin θ0

cos ϕ
, −π

2
+ θ0 ≤ ϕ ≤ π

2
− θ0 . (2.10)

θ then varies between π
2 and θ0. Then L reduces to

L =

√
λ

π

√

1 − w2 sin
p

2
, sin

p

2
= cos θ0 , (2.11)

where we have assumed that the momentum p of the magnon is related to θ0 as in [2].

We can then derive from (2.6) and (2.9) the conserved quantities, the energy and the

two spins,

E =

√
λ

2π

∫

dϕ
r2 + w2r4+r′2

1−r2
√

(1 − w2)(r2 + r′2)

J2 =

√
λ

2π

∫

dϕ
r2

(

w2r4+r′2

1−r2 + w2r2
)

√

(1 − w2)(r2 + r′2)

J1 =

√
λ

2π
w

∫

dϕ

√
r2 + r′2√
1 − w2

=
w

1 − w2
L . (2.12)

Here E and J are infinite, but their difference is finite and has the simple form

E − J2 =

√
λ

2π

∫

dϕ

√
r2 + r′2√
1 − w2

=
1

1 − w2
L . (2.13)

Comparing (2.12) with (2.11), we find that

J1 =
w√

1 − w2

√
λ

π
sin

p

2
, (2.14)

and hence from (2.13) we reproduce the energy formula (2.3).

– 5 –



J
H
E
P
0
8
(
2
0
0
6
)
0
4
9

To complete the solution, let us find the dependence of ϕ on ψ; integrating (2.8) and

using (2.10) and (2.14) gives

ϕ = arctan (cot θ0 tanh (cot θ0 ψ)) . (2.15)

It is also convenient to express θ in terms of ψ

θ = arccos (cos θ0 sech(cot θ0 ψ)) . (2.16)

At the ends of the string, tan ϕ = ± cot θ0, therefore ψ → ±∞. In other words, the string

wraps infinitely many times around the ψ or ϕ1 direction. Note that as θ0 → 0, ϕ(ψ)

approaches the step function ϕ(ψ) = π
2 ε(ψ), while similarly θ(ψ) approaches θ(ψ) = π

2 ε(ψ).

(We have continued θ to θ < 0 since ϕ jumps by π as ψ changes sign). This behavior will

be relevant when considering the folded string.

The discussion of finite gap solutions in section 4 below suggests that there should exist

also more general solutions representing bound states of n magnons with total momentum

p with energy

E − J2 =

√

J2
1 +

λ

π2
n2 sin2 p

2n
= n

√

(
J1

n
)2 +

λ

π2
sin2 p

2n
. (2.17)

In the case of J1 = 0 the special case of θ0 = 0 or p = π and n = 1 corresponds to a string

that stretches through the north pole of a 2-sphere [2]. A combination of n = 2 of such

strings with total p = 2π and thus with E − J2 = 2
√

λ
π is then a limit of a folded closed

string rotating on S2 with its center at rest at the north pole and the positions of the folds

approaching the equator (θ = π
2 ). Similarly, there exists an analogous J2 → ∞, p = nπ

limit of the folded (n
2 times) 2-spin solution of [6, 15] with the simple energy formula found

(for n = 2) in [3]6

E − J2 =

√

J2
1 +

λ

π2
n2 . (2.18)

We shall review this limit and present the explicit form of the resulting solution in the next

subsection.

2.2 J2 À J1 limit of the folded string solution

Another example is found as a limit of the 2-spin folded string described in conformal gauge

by the following ansatz (cf. (2.2), see also [14] for a review)

t = κτ , θ = θ(σ) , ϕ1 = w1τ , ϕ2 = w2τ , (2.19)

where [6] (θ′ ≡ ∂σθ)

θ′′ +
1

2
w2

21 sin 2θ = 0, w2
21 ≡ w2

2 − w2
1 (2.20)

6The J2 À J1 limit of the folded string solution of [6] was discussed (for n = 2) in appendix E in [15]

where the leading term in the expansion of the square root at J1 >
√

λ was found.
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where we assumed that w2 > w1 and for generality introduced the scaling parameter κ.7

Then

θ′2 = w2
21(sin

2 θ∗ − sin2 θ) , (2.21)

where θ∗ determines the length of the folded string, i.e. −θ∗ ≤ θ(σ) ≤ θ∗. The conformal

gauge constraint implies

κ2 = θ′2 + w2
1 cos2 θ + w2

2 sin2 θ = w2
1 cos2 θ∗ + w2

2 sin2 θ∗ . (2.22)

We shall consider the case of a single fold (the number of folds n
2 is easy to restore at any

stage). The solution of (2.21) can be written in terms of the elliptic functions [6, 15]

cos θ(σ) = dn(w21σ, q), sin θ(σ) =
√

q sn(w21σ, q) . (2.23)

q ≡ sin2 θ∗ =
κ2 − w2

1

w2
2 − w2

1

. (2.24)

The periodicity in σ implies8

2π =

∫ 2π

0
dσ = 4

∫ θ∗

0

dθ

w21

√

sin2 θ∗ − sin2 θ
, w21 =

2

π
K(q) . (2.25)

The conserved charges are

E =
√

λ κ, J1 =
√

λ w1

∫ 2π

0

dσ

2π
cos2 θ =

2
√

λw1

πw21

∫ θ∗

0

cos2 θdθ
√

sin2 θ∗ − sin2 θ
(2.26)

J2 =
√

λ w2

∫ 2π

0

dσ

2π
sin2 θ =

2
√

λw2

πw21

∫ θ∗

0

sin2 θdθ
√

sin2 θ∗ − sin2 θ
. (2.27)

The parameters w1, w2 and θ∗ can be determined in terms of J1 and J2 (and λ).9 Let us

now follow [15, 3] and consider a special limit of this solution where J2 À J1, i.e. J2 → ∞
for fixed J1. As usual in a semiclassical expansion we assume that λ À 1 and J1 = J1√

λ
is

kept finite. It corresponds to the particular case when the string is maximally stretched

in θ, so that its angular momentum J2 around its centre of mass is maximal and goes to

infinity (while the momentum of its center of mass J1 is arbitrary).

Let us now take the limit θ∗ → π
2 , i.e. q → 1. Let us distinguish two steps. First, the

conformal constraint (2.22) implies that w2 = κ. Second, the periodicity condition (2.25)

leads to the conclusion that one must have w21 → ∞. Indeed, in the limit q → 1 we get

K(q) → ∞, so that

θ∗ →
π

2
, q → 1 , i.e. w21, κ → ∞ . (2.28)

7When w2 = w1 the solution is θ = mσ, where m is an integer. This is can be transformed [15] into the

circular rotating solution with equal spins J1 = J2. In the limit when J1,2 = ∞ it has E = J1 + J2, i.e. is

equivalent to a BPS state represented by a point-like string.
8Here K(q) ≡

R π

2

0
dα√

1−q sin2 α
.

9Combining the above equations one obtains the two equations that determine E = E(J1,J2), where

E =
√

λE , J1 =
√

λJ1, J2 =
√

λJ2 [15]:
“

E
K(q)

”2

−
“

J1

E(q)

”2

= 4
π2 q ,

“

J2

K(q)−E(q)

”2

−
“

J1

E(q)

”2

= 4
π2 .

– 7 –
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Figure 1: θ(σ) = arcsin[
√

q sn(w21σ, q)], for q = 0.99999999, −π ≤ σ ≤ π.

If we do not impose the periodicity condition, we get a more general kink solution (see

(2.34) below) which does not, however, represent a physical closed-string state.

Setting10

w1 ≡ κw , w21 = κ
√

1 − w2 , w < 1 , (2.29)

so that ϕ1 = wt, ϕ2 = t, cf. (2.4), we get from (2.21)11

θ′ = ±κ
√

1 − w2 cos θ . (2.30)

To illustrate what happens as θ∗ → π
2 , i.e. as q approaches 1, one may plot the periodic

solution θ(σ) = arcsin[
√

q sn(w21σ, q)] with σ between −π and π (see figure1). In the limit,

θ(σ) for −π < σ < π becomes just a step function, like the one considered previously,

jumping from −π
2 to +π

2 . It can then be periodically extended to all σ, so that θ′ → ±∞
at σ = −π, 0, π, . . . and θ′ → 0 at other points in agreement with (2.30). The energy of the

solution and J2 then approach infinity

E =
√

λ κ =
2
√

λ

π
√

1 − w2

∫ π
2

0

dθ

cos2 θ
→ ∞ , (2.31)

J1 =
2
√

λ

π

w√
1 − w2

, J2 =
2
√

λ

π
√

1 − w2

∫ π
2

0
dθ

sin2 θ

cos2 θ
→ ∞ , (2.32)

while E − J2 stays finite [3]

E − J2 =

√

J2
1 +

4λ

π2
. (2.33)

Let us mention that if one formally relaxes the periodicity condition in σ and introduces

the new spatial variable x = κσ ∈ (−∞,∞) which will be fixed in the limit κ → ∞ then

the solution of (2.30) of the theory defined on a plane instead of a cylinder is

θ(x) = ±2 arctan tanh(
1

2

√

1 − w2x) , x ≡ κσ . (2.34)

10In order to have J1 staying finite in the limit κ → ∞ we need to rescale w1.
11w = 1 thus corresponds to the BPS limit when θ is constant.
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This non-trivial solution (2.34) (which is not a limit of the periodic solution on a circle)

appears only in the exact scaling limit and describes a kink localized near x = 0.12

Let us mention that for w = 0 eq.(2.34) represents a limit of the solution in [2] in the

conformal gauge. The parameter θ0 in [2] and in the previous subsection is formally related

to θ∗ by a π
2 shift. Indeed, here the center of the string is at the pole (θ = 0) and its ends

(at ±θ∗) approach the equator in the limit, while in the previous subsection the ends of

the string where at the equator from the start while its center was approaching the pole

as θ0 → 0.

Another remark is that the energy formula (2.17) suggests the existence of more general

closed string configurations with J1 = 0 for which p = 2Mπ with integer M

E − J2 =

√
λ n

π
| sin Mπ

n
| . (2.35)

The corresponding closed string solution describes a string with spikes [29] on S5 and was

obtained in [31]. It has

ϕ1 = 0, ϕ2 = ωτ + Mσ, θ(σ) = θ(σ + 2π) . (2.36)

In the limit J2 → ∞, one finds that ω → 1. For an arbitrary winding number M and

number of cusps n, the closed string is built out of n segments with ends on the ϕ2-equator

of S2 (with minimal value of θ = θ∗ reached in the middle of each segment); all segments

combine to cover the 2πM distance along the equator. For M = 1, n = 2, one recovers

the folded string, or more generally, for M = n
2 one gets n

2 -folded string solution for which

the string stretches between the opposite points on the equator passing through the north

pole in θ (i.e. in this case θ∗ = π
2 ).

2.3 J2 À J1 limit of circular string solution

The simplest circular 2-spin string solution on S3 is represented in conformal gauge by [22]

(cf. (2.1),(2.2),(2.19))

t = κτ , θ = θ0 = const , ϕ1 = w1τ + m1σ , ϕ2 = w2τ + m2σ . (2.37)

Written in terms of 2 complex combinations of embedding coordinates of S3 into R4 we

have

X1 = a1e
iw1τ+im1σ, X2 = a2e

iw2τ+im2σ, |a1|2 + |a2|2 = 1 , (2.38)

where a1 = cos θ0, a2 = sin θ0. The energy and two spins are

E =
√

λE , Ji =
√

λJi , E = κ, Ji = a2
i wi , (2.39)

where the equations of motion and conformal gauge conditions imply (i = 1, 2)

wi =
√

m2
i + ν2, κ2 = 2

∑

i

a2
i w

2
i − ν2,

∑

i

a2
i wimi = 0 . (2.40)

12This solution of the sin-Gordon equation may be interpreted as describing a zero-energy particle that

goes from one maximum of the − cos2 θ potential to another in an infinite amount of “time” x (we have

θ(0) = 0, θ(x = ±∞) = ±π

2
).
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This gives

E2 = 2
∑

i

√

m2
i + ν2Ji − ν2,

∑

i

miJi = 0,
∑

i

Ji
√

m2
i + ν2

= 1 . (2.41)

Here we are interested in the solution when J2 À J1. To consider this it is useful to fix

one of the two winding numbers to be 1 (it is easy to restore its general value at the end);

setting

m2 = 1, m1 = −m, J2 = mJ1 (2.42)

we should thus expand the above relations in large m at fixed J1. In general, the relation

between the spins and the energy is found by eliminating ν from the following two equations

mJ1√
1 + ν2

+
J1√

m2 + ν2
= 1, E2 = 2

√

1 + ν2mJ1 + 2
√

m2 + ν2J1 − ν2 . (2.43)

Expanding in large m we get from the first equation

ν2 = m2J 2
1 +

2J 3
1

√

1 + J 2
1

m + J 2
1 − 1 + 3J 2

1

(1 + J 2
1 )2

+
J 3

1 (1 + 6J 2
1 )

(
√

1 + J 2
1 )7

1

m
+ O(

1

m2
) (2.44)

Then the second equation in (2.43) gives

E = κ = mJ1 +
√

1 + J 2
1 − 1

2m

J1

1 + J 2
1

+ O(
1

m2
) , (2.45)

so that in the strict m → ∞, κ → ∞ limit we get (recalling that J2 = mJ1)

E − J2 =
√

J2
1 + λ . (2.46)

This is similar to the expressions (2.3),(2.33) found above for other solutions in the same

limit.

Let us comment on the form of the limiting solution. In the limit the string becomes

infinitely long (has infinite winding number m1) but has infinitesimal radius and its position

approaches θ0 = π
2 . One can formally express the limiting solution in terms of the coordi-

nates on R×R instead of R×S1 which one may keep finite in the limit κ → ∞, J2 → ∞.

For m2 = 1 we get:

X1 = a1e
i
√

1+J−2
1 t − iJ−1

1 x, X2 = a2e
it , t = κτ, x = κσ , (2.47)

where the limiting values of the parameters ai are13

a1 ≈ J1

(1 + J 2
1 )1/4

1√
J2

→ 0, a2 ≈ 1 − J 2
1

2
√

1 + J 2
1

1

J2
→ 1 . (2.48)

Restoring the dependence on the second winding number m2 ≡ k we get

E − J2 =
√

J2
1 + λk2 . (2.49)

A similar limit exists for a circular (S, J) string in the SL(2) sector [22]; we discuss this in

appendix B.

13In general, for m2 = 1 the constants a1, a2 can be expressed as [22] a2
1 =

√
1+ν2

m
√

m2+ν2+
√

1+ν2
, a2

2 =

m
√

m2+ν2

m
√

m2+ν2+
√

1+ν2
.
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3. 1-loop correction to the energy of folded and circular string in the

J2 → ∞ limit

In this section we shall perform a check of the exactness of the energy formulae for the

folded (2.33) and circular (2.46) solutions by computing their 1-loop string corrections and

showing that they vanish.

3.1 Folded string case

In appendix A we have presented some details of the computation of the bosonic and

fermionic quadratic fluctuation actions near the folded string solution (2.19) for arbitrary

J1, J2, i.e. arbitrary parameter θ∗. Here we shall specialize to the limiting case of interest

(2.28): θ∗ = π
2 , κ → ∞.

Before getting into the more technical details of the computation let us sketch some

of its general features. For finite κ the 1-loop correction to the energy is given by the sum

over characteristic frequencies, i.e., symbolically,

E1 =
1

2κ

∞
∑

n=−∞

∑

r

cr

√

n2 + M2
r , (3.1)

where cr are multiplicity and sign factors, n is the discrete momentum on a circle σ ∈
(−π, π) and Mr are effective masses depending on parameters of the solution. The 1

κ factor

is the proportionality coefficient between the space-time and 1-d energy reflecting that

t = κτ . In the large κ limit Mr will scale as Mr → κM̄r; introducing pn = n
κ and keeping

only the leading order in κ → ∞ one can then replace the sum over n by an integral over

a continuous momentum variable conjugate to spatial variable x = κσ (see also [13] for a

discussion of a similar limit):

E1 =
1

2

∫ ∞

−∞
dp

∑

r

cr

√

p2 + M̄2
r + O(

1

κ
) . (3.2)

The same result can be arrived at directly by introducing the κ-rescaled variables as in

(2.29) w1 = κw, t = κτ, x = κσ. Then the resulting quadratic fluctuation action can be

written as S =
∫

dt
∫ ∞
−∞ dxL̄.

In computing L̄ and thus M̄r for the present case of the folded solution we should

remember to use the form of the solution as it appears in the large κ limit of the original

periodic solution on a σ-circle, and not the formal solution on an infinite line (2.34) that

exists in the strict scaling limit. In other words, θ(σ) should be replaced by a periodic

version of the step function π
2 ε(σ) which is a large κ limit of the solution (2.23).

Let us now consider in turn the relevant bosonic and fermionic fluctuations as they

appear in L̄. The AdS5 fluctuations in (4.1) have rescaled mass equal to 1, and the masses

of two decoupled S5 fluctuations in (4.6),(4.4) are be given by

M̄2
3 = −Λ̄ = 1 − 2(1 − w2) cos2 θ , Λ = κ2Λ̄ . (3.3)
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The Lagrangian for the remaining three S5 bosonic fluctuations (4.11) takes the form (here

f ′ = ∂xf, ḟ = ∂tf)

L̄ =
1

2

[

η̇2 + ḟ2
1 + ḟ2

2 − η′2 − f ′2
1 − f ′2

2 − M̄2
1 (η2 + f2

1 ) − M̄2
2 f2

2

+ 4(w sin θ f1 − cos θ f2)η̇

]

, (3.4)

M̄2
1 = (w2 − 1) cos 2θ , M̄2

2 = (w2 − 1)(1 + cos 2θ) . (3.5)

As already mentioned above, θ(σ) should be replaced by the periodic extension of the step

function π
2 ε(σ) at −π < σ < π. To leading order in large κ one may formally replace it by

π
2 ε(x) 14

θ(x) =
π

2
ε(x) , ε(x) =

{ 1, x > 0

0, x = 0

−1, x < 0

(3.6)

Thus θ is essentially constant for x > 0 and for x < 0 (i.e. the string is close to a point-like

geodesic state).15 Then

sin θ = ε(x) , cos θ = 1 − ε2(x) =

{

0, x 6= 0

1, x = 0
. (3.7)

If we ignore the contribution of the point x = 0, 16 we find that the mass (3.3) of the two

decoupled S5 fluctuations becomes equal to 1, and that f2 in (3.4) becomes massless and

decouples. We are left with the following Lagrangian for η and f1

L̄ =
1

2

[

η̇2 − η′2 + ḟ2
1 − f ′2

1 + (w2 − 1)(η2 + f2
1 ) + 4wε(x)f1η̇

]

. (3.8)

Using that ε2 = 1 away from the point x = 0, we end up with the following characteristic

frequencies (conjugate to time variable t)

ω = ±w ±
√

p2 + 1 , (3.9)

where p is a continuous 1-dimensional momentum corresponding to the x-direction. We

explain the derivation of (3.9) in detail at the end of appendix A.

Let us now consider the fermionic fluctuations in (4.16),(4.20), where we set w2 = κ

and rescale the coordinates by κ. We shall also use that (2.30) implies θ′ = ±
√

1 − w2 cos θ,

θ′′ = −(1 − w2) sin θ cos θ, where here and below prime stands for ∂x (and dot for ∂t). To

14More precisely, one needs also to include step functions at ±∞. It turns out that contributions of

isolated points, such as x = 0,±∞, may be ignored when computing the spectrum.
15This limit of the folded solution written in cartesian coordinates is X1 = [1− ε2(x)]eiwt, X2 = ε(x)eit,

so that the size of the string shrinks to zero in X1 plane apart from x = 0 (and x = ±∞). This is similar

to what was found in the case of the circular solution (2.47).
16A qualitative reason why one can ignore the contribution of this single point is that we are computing an

extensive quantity and the coefficient function in the corresponding differential equation for the fluctuations

is finite at this point (i.e. this is different from, e.g., a delta-function potential case).
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simplify the fermionic operator DF in (4.20) we perform the rotations in the (89) and

(08)-planes:

ϑ = e
1
2
sΓ8Γ9e

1
2
vΓ0Γ8 ϑ̃, sin s =

1

u
sin θ , cos s =

w

u
cos θ , (3.10)

u = tanh v =
√

sin2 θ + w2 cos2 θ, cosh v =
1√

1 − w2 cos θ
. (3.11)

Then DF becomes

DF = Γ0

√

1 − w2 cos θ∂t − θ′Γ7∂x + uθ′Γ078Γ1234

+

√
1 − w2

2u
Γ0 cos θ

[

√

1 − w2 sin θ(−uΓ0 + Γ8) + wΓ9

]

Γ7 (3.12)

+ θ′2(
1

2u
tan θ Γ0 −

w

2u2
√

1 − w2 cos θ
Γ9)Γ78 + θ′2

w

2u
√

1 − w2 cos θ
Γ709 .

If we further do a rescaling of the fermionic variable, introducing

Θ =
√

θ′ ϑ̃ , LF = −2iκΘ̄D̂F Θ , (3.13)

we obtain

D̂F = ±Γ0∂t − Γ7∂x ∓ w

2u2
Γ789 + uΓ078Γ1234 , (3.14)

where the upper signs correspond to x < 0, while the lower sign to x > 0 (they come

from ∂xθ = ±
√

1 − w2 cos θ). Since Γ2
1234 = 1, we can restrict to subspaces satisfying

Γ1234Θ = ±Θ.

Let us now specialize to the relevant case when θ is replaced by the step-function (3.6).

Ignoring again the contribution of the x = 0 point and using that then u = 1 for x < 0,

and u = −1 for x > 0, we get

D̂F = ±Γ0∂t − Γ7∂x ∓ w

2
Γ789 ± Γ078 . (3.15)

Computing the determinant of this operator (now having constant coefficients), and solv-

ing the resulting characteristic equations on either side of x = 0, one finds that the cor-

responding frequencies are similar to (3.9), i.e. the are essentially the BMN ones up to a

w-dependent shift,

ω = ±w

2
±

√

p2 + 1 . (3.16)

Combining the contributions of all modes to the 1-loop shift of the energy (taking into

account proper sign factors in (4.21) implying that the w-dependent shifts in (3.9) and

(3.16) drop out) one finds that, just as in the BMN case, the 8 non-trivial bosonic mode

contributions cancel against the 8 fermionic contributions, therefore, the 1-loop correction

to the energy vanishes,

E1 = 0 . (3.17)
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3.2 Circular string case

Let us now perform a similar computation in the case of the large spin limit of the circular

solution discussed in section 2.3. The bosonic fluctuation Lagrangian near the circular

solution with generic J1,J2 was found in [22]. In addition to 4 AdS5 massive fluctuations

with mass κ there are 2 free fluctuations (corresponding to the X3 direction of S5) which

have mass ν. Using (2.44) and rescaling the coordinates by κ as above, we end up with the

corresponding characteristic frequencies, given in the κ → ∞ limit by the same expression

ω = ±
√

p2 + 1 . (3.18)

The remaining 3 coupled S5 fluctuations in general are described by the following La-

grangian [22]

L =
1

2
(ḟ2

1 + ḟ2
2 + ġ2

2−f ′2
1 −f ′2

2 −g′22 )+2(a2w1f1−a1w2f2)ġ2−2(a2m1f1−a1m2f2)g
′
2 (3.19)

Setting m2 = 1, m1 = −m and rescaling the world-sheet coordinates by κ = mJ1 → ∞
(see (2.45)) we end up with the following analog of (3.4)

L̄ =

[

1

2
(ḟ2

1 + ḟ2
2 + ġ2

2 − f ′2
1 − f ′2

2 − g′22 ) + 2ġ2f1

√

1 + γ2 + 2γg′2f1

]

, (3.20)

γ ≡ J−1
1 . (3.21)

f2 thus decouples in the limit and becomes massless. The non-trivial characteristic fre-

quencies are then found to be

ω1,2 =
√

1 + γ2 ±
√

(p + γ)2 + 1 , ω3,4 = −
√

1 + γ2 ±
√

(p − γ)2 + 1 . (3.22)

Interestingly, while the circular solution is unstable at finite J2 [22], it becomes stable in

the present limit, i.e. all characteristic frequencies are real.

The fermionic fluctuation Lagrangian for the general circular solution with two unequal

spins was found in [33] (see also [34]). In the notation of [33]

L = 2i ϑ̄DF ϑ, DF =

(

∆+
F 0

0 ∆−
F ,

)

⊗ 1 (3.23)

∆±
F = σ̄a∂a ∓ Wσ̄012 ∓ Qσ̄134 , (3.24)

where σ̄µ, σµ are 16 × 16 gamma matrices in ten dimensions and a = 0, 1. Here

W 2 = a2
1(m

2
1 +ν2)+a2

2(m
2
2 +ν2), M2 = a2

1m
2
1 +a2

2m
2
2, Q =

a1a2

2MW
κ(m2

1−m2
2). (3.25)

One can compute the characteristic frequencies from the following determinant

det∆±
F = (∂2

0 − ∂2
1)2 + 2W 2(∂2

0 − ∂2
1) + 2Q2(∂2

0 + ∂2
1) + (Q2 + W 2)2 = 0 , (3.26)

In the large κ limit one finds

W 2 = κ2 + · · · , M2 =
κγ

√

1 + γ2
+ · · · , Q2 =

1

4
γκ + · · · (3.27)
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After the rescaling of world-sheet coordinates we get from det∆±
F = 0 the following

fermionic characteristic frequencies (with 4-fold degeneracy)

ω = ±
√

(p ± 1

2
γ)2 + 1 . (3.28)

Collecting the resulting bosonic and fermionic frequencies and observing that after the

rescaling of τ by κ the 2d and space-time energies are the same, we finish with the following

expression for the 1-loop correction to the energy17

E1 =
1

2

∫ ∞

−∞
dp

[

6
√

p2 + 1 +
√

(p + γ)2 + 1 +
√

(p − γ)2 + 1

− 4

√

(p +
1

2
γ)2 + 1 − 4

√

(p − 1

2
γ)2 + 1

]

. (3.29)

This integral is convergent, and evaluating it directly one finds that it vanishes,

E1 = 0 . (3.30)

It is interesting to note that this vanishing is due to a non-trivial cancellation between the

fermionic and bosonic contributions. Indeed, if we shift the fermions momentum in (3.29)

by r, the resulting integral is still convergent,

I(γ, r) ≡ 1

2

∫ ∞

−∞
dp

[

6
√

p2 + 1 +
√

(p + γ)2 + 1 +
√

(p − γ)2 + 1

− 4

√

(p + r)2 + 1 − 4

√

(p − r)2 + 1

]

= γ2 − 4r2 . (3.31)

However, it vanishes only if r = 1
2γ as in (3.29), suggesting the presence of hidden 2d

supersymmetry in this problem.

The generalization of the above expressions to the case of non-trivial second winding

number m2 = k can be found by replacing γ = J−1
1 → kJ −1

1 ; this does not change the

conclusion about the vanishing of the 1-loop correction to the energy in this limit.

4. Infinite spin limit and bound magnons in integral Bethe equations

In [8] it was shown how to generate classical solutions for strings propagating on R × S3

and compare the results to gauge theory predictions using finite gap equations. In this

section we will discuss the scaling limit and solutions of [2, 3, 21] and section 2 using this

formalism.

This will then allow us, in particular, to argue that gauge theory and string theory

predictions should match in this limit.

17Upon using the signs factors from (4.23) for the contributions of the frequencies (3.22) one finds that

the p-independent parts of them cancel out.
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4.1 Classical finite gap equations for a string on R × S3

Let us first summarize the results of [8]. The string sigma model action on R × S3 in

conformal gauge can be written as

S = −
√

λ

4π

∫

dτdσ

[

−(∂at)
2 +

1

2
Tr(j2

a)

]

, (4.1)

where ja are the right currents which are written in terms of the SU(2) group element G
as ja = G−1∂aG = 1

2ij
A
a σA. The equations of motion that follow from (4.1) are

∂+j− + ∂−j+ = 0, ∂+j− − ∂−j+ + [j+, j−] = 0 , ∂+∂−t = 0, . (4.2)

We can also define the left currents la = GjaG−1 = ∂aG G−1. The charges coming from the

third component of the left and right currents are

Q3
L =

√
λ

4π

∫

dσ l30 = J2 + J1 , Q3
R =

√
λ

4π

∫

dσ j3
0 = J2 − J1 . (4.3)

A solution for t in (4.2) is t = κτ , and so the string energy E is given by

E =

√
λ

2π

∫ 2π

0
dσ ∂τ t =

√
λκ . (4.4)

We can now set up a pair of linear equations that are satisfied provided the string equations

of motion are satisfied:
[

∂σ +
g√
2

(

j+
g√
2
− x

− j−
g√
2

+ x

)]

Ψ = 0 ,

[

∂τ + 2π
g√
2

(

j+
g√
2
− x

+
j−

g√
2

+ x

)]

Ψ = 0 , g2 ≡ λ

8π2
. (4.5)

where x is a spectral parameter (not to be confused with the spatial coordinate used in

the previous sections). The first equation can be integrated to give the monodromy matrix

(given by path-ordered product)

Ω(x) = P exp

∫ 2π

0
dσ

g

2
√

2

(

j+
g√
2
− x

− j−
g√
2

+ x

)

. (4.6)

Because of its unimodularity Ω(x) has eigenvalues e±iP (x) and satisfies the equation

TrΩ(x) = 2 cos P (x) , (4.7)

where P (x) is the quasi-momentum. It is clear from the Virasoro constraints

1

2
Trj2

+ =
1

2
Trj2

− = −κ2 , (4.8)

and (4.6) that P (x) has the pole structure

P (x) = − E/4

x ± g√
2

+ · · · (x → ∓ g√
2
). (4.9)
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The asymptotic properties of P (x) are determined by the charges QL and QR. For large

x, P (x) behaves as

P (x) = −J2 − J1

2x
+ · · · (x → ∞) . (4.10)

For small x, using Ω(0) = 1 and expanding about x = 0, one finds

P (x) = 2πm +
J2 + J1

2
x + · · · (x → 0) . (4.11)

Here m is an integer, which follows from the periodicity condition in σ for a closed string.

We will refer to 2πm as the string momentum, and this can be thought of as a level

matching condition on the string.

Since P (x) is not single valued, there can be an interesting singularity structure in

the x complex plane. There are two types of singularities that we can have. First, there

can be branch cuts along contours Ck where two eigenvalues of the monodromy matrix are

interchanged on either side of the cut, up to a factor of 2π. Hence,

P (x + i0) + P (x − i0) = 2πnk, x ∈ Ck . (4.12)

We can also have singular points in the complex plane such that P (x) jumps by a multiple

of 2π when transported around the singularity. These singularities will pair up such that

P (x) jumps by a multiple of 2π when it crosses a contour between the two singularities.

We call this contour a condensate and label condensate j by Bj.

Because of the cuts Ck, the spectral parameter space becomes a two-sheeted surface,

with the singularities in (4.9) appearing on both sheets. It is convenient to define the

resolvent G(x)

G(x) = P (x) +
E/4

x + g√
2

+
E/4

x − g√
2

, (4.13)

which is free of these poles on the top sheet. Hence, on this physical sheet, G(x) can be

expressed as

G(x) =
∑

k

∫

Ck

dx′
ρ(x′)
x − x′

+
∑

j

∫

Bj

dx′
ρ(x′)
x − x′

, (4.14)

where ρ(x′) acts as a density along the cuts and condensates. The density along a con-

densate is readily determined to be ρ(x′) = −i nj if x′ ∈ Bj. Along the cuts, the condition

in (4.12) can be reformulated as an integral equation for the density

G(x + i0) + G(x − i0) = 2 −
∫

dx′
ρ(x′)
x − x′

=
xE

x2 − g2/2
+ 2πnk, x ∈ Ck. (4.15)

The asymptotic behavior for large and small x in (4.10) and (4.11) leads to the conditions
∫

dx ρ(x) = J1 +
E − J2 − J1

2
,

∫

dx
ρ(x)

x
= 2πm ,

∫

dx
ρ(x)

x2
=

E − J2 − J1

g2
. (4.16)
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We can then rewrite the integral equation in (4.15) in terms of the inputs J1 and J2 as

2 −
∫

dx′
ρ(x′)
x − x′

=
x(J1 + J2)

x2 − g2/2
+ g2x

∫

dx′
ρ(x′)

x′2(x2 − g2/2)
+ 2πnk, x ∈ Ck. (4.17)

This integral equation [8] is normally the main tool for finding string solutions, but we will

see that it is not relevant for solutions made up only of giant magnons!

4.2 Infinite J limit and matching to asymptotic spin chain Bethe equations

Eq.(4.17) can be compared to the integral equation that follows in the “thermodynamic”

(J1, J2 À 1, J1
J2

=fixed) limit [5, 12] from the proposed asymptotic Bethe ansatz on the

gauge theory side [9]

2 −
∫

dx′
ρ(x′)
x − x′

=
x(J1 + J2)

x2 − g2/2
+ g2x

∫

dx′
ρ(x′)

xx′(xx′ − g2/2)
+ 2πnk, x ∈ Ck . (4.18)

In general, the two equations (4.17) and (4.18) do not match starting with “3-loop” order

implying the need to introduce an extra “dressing factor” into the spin chain Bethe ansatz

[10].

If we now consider the scaling limit in which E and J2 become infinite, but their

difference E − J2 as well as J1 stay finite, then it follows from (4.16) that the second

term in the r.h.s. of (4.17) which was the cause of difference between (4.17) and (4.18) is

vanishingly small compared to the first term. This also implies that the l.h.s of (4.17) is

negligible, and hence nk must be infinite. As a result, the cut must have shrunk to a point.

In general, the above integral equations should receive also contributions from string

loop corrections [27, 28]. The 1-loop correction to the dressing phase considered in [28]

produces extra contributions to the r.h.s. of the integral Bethe equation (4.18), but it is

easy to see (e.g., from eq. (10) in [28]) that it is negligible in the present limit. This implies

that the predictions of the asymptotic “undressed” gauge theory Bethe ansatz of [9] and

full string Bethe ansatz should agree in this limit.18

4.3 Giant magnons and their bound states as finite-gap solutions

Let us now consider some simple solutions of equations (4.16) and (4.17) in the infinite

J2 limit. We start with solutions made up only of condensates and no cuts Ck. Without

cuts we can disregard eq. (4.17) and the condensates, whose contribution to the energy,

spins and string momentum is additive, can be treated individually. The periodicity of the

closed string forces the total string momentum to be an integer multiple of 2π. However,

the momentum p from an individual condensate need not satisfy this condition as long

as the total momentum coming from all the condensates that make up the closed string

solution does satisfy the condition.

Hence, we may formally consider the case of a single condensate only, remembering

that the final physical closed string solution will be made up of more than one condensate.

18This conclusion is consistent with the discussion in [3] where bound states of ginat magnons where

interpreted as poles of BDS S-matrix; it was assumed that the dressing factor does not introduce new

poles.
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It is useful to introduce a different spectral parameter y which satisfies y = x+ g2

2x [9]. Then

the equations on ρ in (4.16) become
∫

B
dy ρ(y) = J1 ,

∫

B
dy

ρ(y)
√

y2 − 2g2
= p ,

2g2

∫

B
dy

ρ(y)

y
√

y2 − 2g2 + y2 − 2g2
= E − J2 − J1 . (4.19)

In order for the momentum and the energy to be real we also require that the end points

of the condensate be complex conjugate to each other. Assuming that ρ(y) = −i n, we

see from the first equation in (4.19) that the end points of the condensate are y0 ± iJ1/2,

where y0 is to be determined. If we interpret ρ(y) as a density of Bethe roots, then the

contour would naturally be chosen to be a straight line along the imaginary direction in

order that dyρ(y) is positive real. However, because of the square root in the second and

third integral equations, there is a branch cut between ±
√

2g and so there is an ambiguity

in how one chooses the contour. In particular, if we substitute this density into the second

equation, we find the relation

arccosh

(

y0 + iJ1/2√
2g

)

− arccosh

(

y0 − iJ1/2√
2g

)

= i
p

n
, (4.20)

where one can see a sign ambiguity in evaluating the arccosh. If we momentarily set J1 = 0,

then one can have the solution y0 =
√

2g cos p
2n , assuming that the end points are evaluated

on opposite sides of the cut, which requires the contour to go outside one of the branch

points. Otherwise, there is a solution only if p/n is a multiple of 2π. The more general

solution is

y0 =

√

2g2 cos2
p

2n
+

(

J1

2n

)2

cot2 p

2n
, (4.21)

where one finds that a straight-line contour is possible if

J1 > 2
√

2 g n sin
p

2n
tan

p

2n
. (4.22)

If we start with J1 satisfying this bound and smoothly decrease the value, one will see

that the contour starts deforming once J1 is less than the bound. Even as J1 → 0, we are

still left with a nontrivial contour. This is demonstrated in figure 2 where we show three

contours with different values of J1 and fixed p.

Finally, performing the final integral and putting in the value for y0 in (4.21), one finds

E − J2 = n

√

(

J1

n

)2

+ 8g2 sin2 p

2n
, (4.23)

which is the same as (2.17). The case with n = 1 corresponds to a single magnon with spin

[3]. Other values of n represent bound states of n magnons with the string momentum p

and S3 angular momentum shared equally among magnons.
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Figure 2: Condensates for three different values of J1. As J1 → 0, the end points of the contour

approach the cut.

We can also derive similar relations directly from the discrete BDS Bethe equations.

These equations for the Bethe roots yj are [9]

(

x(yj + i/2)

x(yj − i/2)

)J1+J2

=

J1
∏

k 6=j

yj − yk + i

yj − yk − i
(4.24)

where x(y) = (y +
√

y2 − 2g2)/2. In the limit where J2 → ∞, there can be Bethe string

solutions, where a string is made up of J1 roots situated at yj = y0 + i(J1 + 1− 2j)/2 with

j = 1, . . . , J1 and y0 real. The momentum contribution of a root satisfies

eipj =
x(yj + i/2)

x(yj − i/2)
, (4.25)

and so the total momentum coming from a Bethe string is

i p =

J1
∑

j=1

[

ln[x(y0 + i(J1 + 2 − 2j)/2)] − ln[x(y0 + i(J1 − 2j)/2)]
]

= ln [x(y0 + iJ1/2)] − ln [x(y0 − iJ1/2)]

= arccosh

(

y0 + iJ1/2√
2 g

)

− arccosh

(

y0 − iJ1/2√
2 g

)

, (4.26)

which matches (4.20) when n = 1. Likewise, E − J2 − J1 is [9]

E − J2 − J1 = ig2
J1
∑

j=1

(

1

x(yj + i/2)
− 1

x(yj − i/2)

)

= ig2

(

1

x(y0 + iJ1/2)
− 1

x(y0 − iJ1/2)

)

. (4.27)

It is straightforward to show that this is the result for the third integral in (4.19) when

ρ = −i; thus we get (4.23) with n = 1. More general values of n are obtained by increasing

the density of the roots.

In appendix C we will derive an analogous equation for the SL(2) sector. The other

rank one sector, the SU(1|1) sector, which is equivalent to free fermions in the one-loop

approximation, does not have the poles and zeros in its S-matrix [42, 43] to build up (bound

states of) giant magnons.
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4.4 Finite-gap solutions for large spin limits of circular and pulsating strings

One interesting application of this discussion is a limit of the circular string solution of [22]

considered already in section 2.3. Here we have nJ1 = mJ2, so that J2 → ∞ with finite

J1 corresponds to holding m fixed as n → ∞. In [12, 8] it was argued that these solutions

correspond to single-cut configurations and so G(x) is an algebraic function

G(x) =
L

4

(

1

x − g√
2

+
1

x + g√
2

)

(4.28)

+
L

4

[

(1 + ε)−1/2

x − g√
2

+
(1 − ε)−1/2

x + g√
2

]

√

ax2 + bx + c − πn ,

where L = J1 + J2 and with ε, a, b and c to be determined. In order to cancel the poles,

a, b and c must satisfy 1 = g2

2 a + c, b =
√

2
g ε while matching the asymptotics gives

πn =
L
√

a

4

(

1√
1 + ε

+
1√

1 − ε

)

, π(n − 2m) =

√
2L

√
c

4g

(

1√
1 + ε

− 1√
1 − ε

)

In the limit n → ∞, one finds

ε =

√
λm

√

J2
1 + m2λ

, b =
4πm

√

J2
1 + m2λ

, (4.29)

a =
1

2

(4πm)2

J2
1 + m2λ + J1

√

J2
1 + m2λ

, c =
1

2

m2λ

J2
1 + m2λ + J1

√

J2
1 + m2λ

,

where we used the fact that L/n = J1/m in the limit when L and n both approach ∞. In

this limit the cut shrinks to a point with support at x = x0, where

x0 =
1

4πm

(

√

J2
1 + m2λ + J1

)

, i.e. y0 = x0 +
g2

2x0
=

1

2πm

√

J2
1 + m2λ . (4.30)

As the cut shrinks to zero length, the density approaches ρ(y) = J1δ(y − y0) and so E − J2

approaches the same value as in (2.49) (with k in (2.49) replaced by m in the notation of

the present section)

E − J2 = J1 + 2g2

∫

dy
J1δ(y − y0)

y
√

y2 − 2g2 + y2 − 2g2
=

√

J2
1 + m2λ . (4.31)

Note that (4.30) and (4.31) are precisely the limiting values of, respectively, (4.21) and

(4.23) in the limit n → ∞ if p = 2πm. In other words, this limit of the circular string can

be interpreted as a bound state of n magnons with each magnon having 1/n of the total

energy and momentum.

One can also give a similar interpretation to the limit of pulsating string solutions

discussed in [35, 8, 36]. The corresponding state is outside the SU(2) sector on the gauge

side but is still described by finite gap equations for a string on R × S3. We can write the

ansatz for the pulsating string solution in terms of the complex coordinates X1 and X2 as

(cf. (2.38))

X1 = sin θ eimσ , X2 = cos θ eiϕ , θ = θ(τ), ϕ = ϕ(τ) . (4.32)
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This ansatz corresponds to a circular string wrapped m times and with its center of mass

moving along the ϕ direction with momentum J , and which is pulsating back and forth

along θ. The string equations of motion lead to

ϕ̇ =
J√

λ cos2 θ
, (4.33)

which applied to the conformal constraint gives

κ2 = θ̇2 + m2 sin2 θ +
J2

λ cos2 θ
. (4.34)

If we now assume that J/
√

λ À 1, and m À 1 with m/J fixed, and further assume

that θ ¿ 1, the pulsating becomes harmonic and the constraint equation (4.34) is well

approximated by
E2 − J2

λ
= θ̇2 +

(

m2 +
J2

λ

)

θ2 . (4.35)

Further assuming that E − J is held fixed and following the analogy with the standard

harmonic oscillator quantization (ε = ~ωN where here ω2 = m2 + J2

λ ) we find that

E − J ≈

√

(

mN

J

)2

λ + N2 , (4.36)

where N is the oscillator mode number which must satisfy N ¿ J in order that θ ¿ 1.

The result (4.36) can also be reproduced from solutions of the finite gap equation in [8].

In [8] it was shown that the resolvent arising from the pulsating solution is

G(x) =
1

2

1

x2 − g2/2

(

Ex +

√

[2πm(x2 − g2/2) − Jx]2 + (E2 − J2)x2

)

− πm . (4.37)

This resolvent clearly has four branch points and two cuts. If we now take the limit

E, J → ∞ with E − J and J/m finite, then the two branch cuts each shrink to a point at

x =
1

4π

[

J

m
±

√

(

J

m

)2

+ λ

]

, i.e. y = ± 1

2π

√

(

J

m

)2

+ λ = ± y0 . (4.38)

Hence, the solution has reduced to two zero length condensates which are images of each

other. The densities along the condensates are opposite to each other so that J1 = 0. Each

condensate contributes half the oscillator number, so

ρ(y) =
N

2

(

δ(y − y0) − δ(y + y0)
)

. (4.39)

The total momentum in (4.19) must be zero, which means we should choose the branches
√

(±y0)2 − 2g2 > 0. Finally, the third equation in (4.19) leads to

E − J =
λ

4π





N
(

J
m

)2
+ J

m

√

(

J
m

)2
+ λ

− N
(

J
m

)2 − J
m

√

(

J
m

)2
+ λ





= N

√

(m

J

)2
+ λ , (4.40)
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(b)(a)

Figure 3: Condensates for strings made up of two giant magnons. (a) is the limit of the folded

string and (b) is a pulsating string. The arrows represent the sign of the density while the dashed

line in (b) indicates that the condensate is on the lower sheet.

reproducing (4.36).

We can also work backward and find giant magnon solutions in the pulsating sector.

These solutions would correspond to condensates of equal length and opposite density

with total oscillator number N/2 on each condensate. If the density is given by ±n on each

condensate, then the computation goes through exactly as for the SU(2) case, but with J1

replaced by N/2 and J2 by J . The two condensates have momentum ±p, so one finds

E − J = 2n

√

(

N

2n

)2

+
λ

π2
sin2 p

2n
. (4.41)

We can reduce this to (4.36) by taking n → ∞ and identifying p = mNπ/J .

In figure 3 we show the contours for (a) the limit of the folded string and (b) the

analogous configuration for a pulsating string. The distinction between these two cases is

that the folded string has both condensates on the same sheet, while the pulsating string

has its condensates on different sheets. The string motion in (b) can be viewed as follows:

for half the string, say from 0 < σ < π, the configuration is exactly the same as the limit

of the folded string, with the string having constant angular velocity along ϕ1. On the

other half of the string everything is the same, except the angular velocity along ϕ1 is in

the opposite direction. Even though the separate halves are rotating in opposite directions

in ϕ1, the string is continuous since the two halves are attached where cos θ = 0. Thus,

the string oscillates between a folded configuration and a circular configuration twice every

revolution in ϕ1.

In appendices B and C we shall also discuss similar solutions in the SL(2) sector.

While this paper was in preparation we learned of an interesting forthcoming paper

[41] that discusses the finite J generalization of the giant magnon solutions of [2, 3].
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A. Fluctuation Lagrangian near the folded string solution

A.1 Bosonic fluctuations

Our starting point will be the general form of the 2-spin folded string solution discussed in

section 2.2. We shall consider the conformal gauge.

Since the string is not stretched in the spatial AdS5 directions (with the metric ds2 =

− (1+ 1
4
ζ2)2

(1− 1
4
ζ2)2

dt2+ dζkdζk

(1− 1
4
ζ2)2

) their fluctuations t = κτ + t̃, ζk = 0+ζ̃k, k = 1, 2, 3, 4 are governed

by

L = −1

2
[ − (∂at̃)

2 + (∂aζ̃k)
2 + κ2ζ̃2

k ] , (4.1)

i.e. we get one massless fluctuation and 4 massive ones with the characteristic frequencies

ω = ±
√

n2 + κ2.

To consider the S5 fluctuations we shall follow [22, 37] and use complex embedding

coordinates in terms of which the S5 Lagrangian is

L = −1

2
∂aXi∂

aX∗
i +

1

2
Λ(XiX

∗
i − 1) , (4.2)

and the classical solution is

X1 = cos θ(σ) eiw1τ , X2 = sin θ(σ) eiw2τ , X3 = 0 , (4.3)

so that the classical value of the Lagrange multiplier is

Λ = ∂aXi∂
aX∗

i = −2(κ2 − w2
1)

sin2 θ

sin2 θ∗
− 2w2

1 + κ2 . (4.4)

Introducing the fluctuations Xi → Xi + X̃i one gets

L̃ = −1

2
∂aX̃i∂

aX̃∗
i +

1

2
ΛX̃iX̃

∗
i ,

3
∑

i=1

(XiX̃
∗
i + X∗

i X̃i) = 0 . (4.5)

X̃3 has no classical background and thus decouples, i.e. its equation of motion is

∂2
0X̃3 − ∂2

1X̃3 − ΛX̃3 = 0 , (4.6)

where Λ = Λ(σ).

The remaining 3 independent fluctuations are coupled. Let us define

X̃1 = eiw1τ (g1 + if1) , X̃2 = eiw2τ (g2 + if2) , (4.7)

where the constraint in (4.5) implies

g1 cos θ + g2 sin θ = 0 . (4.8)
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Then

L̃ =
1

2

[

ġ2
1 + ġ2

2 + ḟ2
1 + ḟ2

2 − g′21 − g′22 − f ′2
1 − f ′2

2 + w2
1(f

2
1 + g2

1) + w2
2(g

2
2 + f2

2 )

− 4w1f1ġ1 − 4ω2f2ġ2 + Λ(f2
1 + f2

2 + g2
1 + g2

2)

]

(4.9)

We can simplify this by introducing

ξ = g1 cos θ + g2 sin θ, η = −g1 sin θ + g2 cos θ , (4.10)

and (4.8) implies that η1 = 0. The fluctuation Lagrangian for f1, f2, η then becomes

L̃ =
1

2

[

ḟ2
1 + ḟ2

2 − f ′2
1 − f ′2

2 + η̇2 − η′2 − M2
η η2 − M2

1 f2
1 − M2

2 f2
2

+ 4(w1 sin θ f1 −
√

κ2 − w2
1 cos2 θ∗

sin θ∗
cos θ f2)η̇

]

, (4.11)

where

M2
η = −(κ2 − w2

1)
cos 2θ

sin2 θ∗
, (4.12)

M2
1 = −(κ2 − w2

1)

(

1 − 2
sin2 θ

sin2 θ∗

)

, M2
2 = −(κ2 − w2

1)

(

1 +
cos 2θ

sin2 θ∗

)

, (4.13)

and we used the explicit form of w2 from (2.24).

A.2 Fermionic fluctuations

The quadratic part of the AdS5×S5 superstring Lagrangian evaluated on a bosonic solution

has a simple form (see [7, 13, 5, 23] for details)

LF = i
(

ηabδIJ − εabsIJ
)

ϑ̄IρaDb ϑJ , ρa ≡ ΓAeA
a , eA

a ≡ EA
µ (X )∂aX µ , (4.14)

where I, J = 1, 2, sIJ = diag(1,−1), ρa are projections of the ten-dimensional Dirac ma-

trices and X µ are the coordinates of the AdS5 space for µ = 0, 1, 2, 3, 4 and the coordinates

of S5 for µ = 5, 6, 7, 8, 9. The covariant derivative is given by

Daϑ
I =

(

δIJDa − i

2
εIJΓ∗ρa

)

ϑJ , Γ∗ ≡ iΓ01234 , Γ2
∗ = 1 , (4.15)

where Da = ∂a + 1
4ωAB

a ΓAB , ωAB
a ≡ ∂aX µωAB

µ . Fixing the κ-symmetry by the same

condition as in [23] ϑ1 = ϑ2 = ϑ one gets

LF = −2iϑ̄DF ϑ , DF = −ρaDa − i

2
εabρaΓ∗ρb . (4.16)

Labelling the coordinates as follows:

µ : 0 1 2 3 4 5 6 7 8 9

X µ : t ρ ψ φ1 φ2 γ ϕ3 θ ϕ1 ϕ2 (4.17)
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we find that in the case of the folded solution that the non-trivial components of the Lorentz

connection ωAB
a are

ω87
0 = −w1 sin θ, ω97

0 = w2 cos θ . (4.18)

For ρa we find

ρ0 = κΓ0 + w1 cos θΓ8 + w2 sin θΓ9, ρ1 = Γ7θ
′ (4.19)

The operator DF becomes

DF = (κΓ0 + w1 cos θΓ8 + w2 sin θΓ9)∂0 − Γ7θ
′∂1

− 1

2
(κΓ0 + w1 cos θΓ8 + w2 sin θΓ9)(w1 sin θΓ87 − w2 cos θΓ97)

+ θ′(w1 cos θΓ8 + w2 sin θΓ9)Γ07Γ1234 (4.20)

In section 3.1 we shall consider the special limit of this operator when θ∗ = π
2 and κ → ∞.

A.3 Some details

In the main text we also use the general expression for the 1-loop correction to the energy

in terms of the bosonic and fermionic characteristic frequencies [37]

E1 =
1

κ
E2d =

1

2κ

[ 8
∑

p=1

(

ŵB
p,0 − ω̂F

p,0

)

+

∞
∑

n=1

16
∑

I=1

(

ω̂B
I,n − ω̂F

I,n

)]

, (4.21)

ω̂p,0 = sign(CB
p )ωp,0 , ω̂I,n = sign(C

(n)
I,B)ωI,n , (4.22)

CB
p =

1

2m11(ωp,0)ωp,0
∏

q 6=p(ω
2
p,0 − ω2

q,0)
, C

(n)
I,B =

1

m11(ωI,n)
∏

J 6=I(ωI,n − ωJ,n)
, (4.23)

where m11 is a minor of F , i.e. the determinant of the matrix obtained from F by removing

the first row and first column, with F being the matrix entering the equation detF =

0 for the characteristic frequencies. This matrix satisfies the condition F T (ωI,n, n) =

F (−ωI,n,−n) (see [37] for details).

Let us also explain how one arrives at eq.(3.9) of section 3.1, and, in particular, why

one can indeed ignore the contribution of the x = 0 point. From (3.8) we get

f̈1 − f ′′
1 − (w2 − 1)f1 + 2ε(x)wη̇ = 0 , (4.24)

η̈ − η′′ − (w2 − 1)η − 2ε(x)wḟ1 = 0 , (4.25)

and looking for solutions f1 ∼ A(x)eiωt, η ∼ B(x)eiωt we get

A′′ +(ω2 +w2 − 1)A− 2iωwε(x)B = 0 , B′′ +(ω2 +w2 − 1)B +2iωwε(x)A = 0 (4.26)

Combining these two equations we get a 4-th order differential equation for A, which (after

using that δ(x)ε(x) = 0) becomes

ε2(x)[A′′′′ + ω2A′′ + (w2 − 1)A′′] − 4ε4(x)ω2w2A + δ(x)[ω2A + A′′ + (w2 − 1)A]

+ ε2(x)(ω2 + w2 − 1)[ω2A + A′′ + (w2 − 1)A] = 0 (4.27)

– 26 –



J
H
E
P
0
8
(
2
0
0
6
)
0
4
9

We can solve this equation for x < 0 and x > 0 with the ansatz A ∼ eipx and obtain the

characteristic frequencies (3.9). Notice that the equation (4.27) contains a delta-function

term which signals a discontinuity at the origin. Integrating (4.27) near x = 0 and taking

the interval of integration to zero we find that the only non-vanishing term is

ω2A(0) + A′′(0) + (w2 − 1)A(0) = 0 . (4.28)

One can see that one cannot have the solution A ∼ eipx valid at the origin since the

frequencies (3.9) do not satisfy equation (4.28) unless w = 0. To satisfy (4.28) also for

w 6= 0 we need to have A(0) = 0. This shows that A(x) is discontinuous at origin.

Therefore, one can just ignore the x = 0 point and thus obtain (3.9).

B. Large J limit of circular (S, J) solution in the SL(2) sector

It is straightforward to perform the analog of the analysis of sections 2.3 and 3.2 and

consider the J À S limit of the circular 2-spin solution in the SL(2) sector [22, 37]. One

finds again the square root formula for the classical energy similar to (2.46) and also that

1-loop correction to it vanishes.

B.1 Limit of classical solution

Let us start with a review of the solution [22, 37] describing circular string which is rotating

both in AdS5 and in S5. In terms of complex combination of embedding coordinates one

has

Y0 = r0 eiκτ , Y1 = r1 eiwτ+imσ , X1 = eiwτ+ikσ , Y2,X2,X3 = 0 (B.1)

r0 ≡ cosh ρ0 , r1 ≡ sinh ρ0 , r2
0 − r2

1 = 1 . (B.2)

Here ρ0 is a constant radius of the circular string in AdS5, k and m are the winding

numbers, and w and w are rotation frequencies of the string. From equations of motion we

have

w2 = κ2 + m2, w2 = ν2 + k2, ν2 = −Λ, κ2 = Λ̃ , (B.3)

where Λ and Λ̃ are the Lagrange multipliers for the embedding coordinates. The energy

and the two non-zero spins are

E =
√

λE =
√

λr2
0κ , S =

√
λS =

√
λr2

1w , J =
√

λJ =
√

λw , (B.4)

and the conformal gauge constraints imply

2κE − κ2 = 2
√

κ2 + m2S + J 2 + k2 , (B.5)

mS + kJ = 0 , (B.6)

while (B.2) gives also
E
κ
− S√

m2 + κ2
= 1 . (B.7)
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Eliminating κ from (B.5) and (B.7) one finds E = E(S,J ,m).

Let us now consider the special limit when J → ∞ with S and k being fixed and

negative (this implies m À 1). Then E is also divergent but E − J is finite. We get

κ =
J
|k| +

k2

√
k2 + S2

+ O(
1

J ) , (B.8)

r0 = 1 +
S2

2
√

k2 + S2

1

J + · · · , r1 =
S

(k2 + S2)1/4

1√
J

+ · · · , (B.9)

w =
J
S

√

k2 + S2 +
Sk2

k2 + S2
+ · · · (B.10)

and finally in the limit of J → ∞

E − J =
√

S2 + k2λ . (B.11)

B.2 Vanishing of 1-loop correction to classical energy

Let us set k = −1 for simplicity. For generic J and S the bosonic and fermionic fluctuation

frequencies were obtained in [37]. There are 4 real free massive fields with mass ν, for

which in the limit (and after the rescaling of the coordinates t = κτ, x = κσ) we get

ω = ±
√

p2 + 1. There are also two free massive modes with mass κ, which in the limit has

the same frequencies. The remaining coupled fluctuation Lagrangian in the large m-limit

reads (cf. (3.4))

L̄ =
1

2

(

ḟ2
1 − f

′2
1 + Ḟ 2

0 − F
′2
0 + Ḟ 2

1 −F
′2
1 + Ġ2

1 −G
′2
1

)

− 2
√

1 + S−2F1Ġ1 + 2F1G
′
1 , (B.12)

where F0, F1 and G1 are fluctuations in AdS5 directions. The non-trivial characteristic

frequencies are found to be similar to the ones in the SU(2) case (cf. (3.22))

ω1,2 =
√

1 + β2 ±
√

(p + β)2 + 1 , ω3,4 = −
√

1 + β2 ±
√

(p − β)2 + 1 , (B.13)

β ≡ S−1 .

The fermionic fluctuation Lagrangian has the following general form [37]

L = 2iϑ̄DF ϑ , DF = Γ0∂0 − Γ3∂1 ± iaΓ1 + cΓ016 + dΓ136 , (B.14)

where

a =

√
2mκr0r1√
κ2 − ν2

, c =
κk

w

w2 − w2

κ2 − ν2
, d =

kmκr2
0

κ2 − ν2
. (B.15)

Expanding in large J and rescaling the coordinates we obtain for k = −1

DF = Γ0∂t − Γ3∂x ± iΓ1 −
1

2
βΓ016 −

√

1 + β2Γ136 . (B.16)

The resulting fermionic characteristic frequencies are

ω = ±
√

1 + β2 ±
√

(p ± 1

2
β)2 + 1 . (B.17)
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Proceeding as in the SU(2) sector in section 3.2 to compute the 1-loop correction to the

energy, we again find using (4.23) that in both the bosonic and fermionic cases the p-

independent square roots in (B.13) and (B.17) do not contribute to E1. As a result, we get

the same integral (3.29) as in the SU(2) case

E1 =
1

2

∫ ∞

−∞
dp

[

6
√

p2 + 1 +
√

(p + β)2 + 1 +
√

(p − β)2 + 1

− 4

√

(p +
1

2
β)2 + 1 − 4

√

(p − 1

2
β)2 + 1

]

= 0 . (B.18)

C. Giant magnons in the SL(2) sector

In this appendix we shall consider “giant magnons” in the SL(2) sector, i.e. the analogs

of the solutions of [2] and of section 2.1 that have spins in both AdS5 and S5. These

“magnons” turn out to stretch to the boundary of AdS5 and, strictly speaking, have not

only infinite energy, but also infinite E−J . However, this infinity, unlike the usual infinity

for E or J is associated with the boundary, and as such can be removed with a local

counterterm. The final result is finite.

The setup is similar to the SU(2) case in section 2.1. The relevant metric is that of

AdS3 × S1 part of AdS5 × S5

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dχ2 + dφ2 , (B.1)

and we make the ansatz

t = τ , φ = t + ϕ(σ)

ρ = ρ(σ) , χ = w (t − ψ(σ)) . (B.2)

We then find that D in the action (2.5) is given by

D = (cosh2 ρ − 1 − w2 sinh2 ρ)((∂σϕ))2 + w2 sinh2 ρ (∂σψ)2 + (∂σρ)2

+(∂σϕ − w2 sinh2 ρ ∂σψ)2

= cosh2 ρ (∂σϕ)2 + w2 sinh2 ρ cosh2 ρ (∂σψ)2 + (1 − w2) sinh2 ρ (∂σρ)2

−w2 sinh2 ρ (∂σϕ + ∂σψ)2 . (B.3)

The resulting equations of motion have the special solution for ψ

∂σψ =
1

sinh2 ρ
∂σϕ . (B.4)

Substituting it back into the action we have the same expression as in (2.9), except that

now

r = cosh ρ =
sinϕ0

sin ϕ
, −ϕ0 < ϕ < ϕ0 . (B.5)

The difference E − J and the spin S are then given by

E − J =

√
λ

2π
√

1 − w2

∫ ϕ0

−ϕ0

dϕ
sin ϕ0

sin2 ϕ

S = w(E − J) . (B.6)
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Strictly speaking, the quanties in (B.6) are infinite because of the singularity at ϕ = 0.

This corresponds to ρ = ∞ which is at the boundary of AdS5. Hence, this divergence is

in the UV and differs from the individual divergences of E and J which are in the IR.

Accordingly, the divergence can be cancelled with a counterterm. This is accomplished by

deforming the contour slightly away from ϕ = 0, giving the regulated answers

(E − J)reg = −
√

λ cos ϕ0

π
√

1 − w2
, Sreg = −w

√
λ cos ϕ0

π
√

1 − w2
, (B.7)

where the subscript (reg) refers to the regulated quantities. We can then write

(E − J)reg = −
√

|Sreg|2 +
λ

π2
sin2 p

2
. (B.8)

One can also derive this result using the finite gap analysis. We first remark that an

SL(2) spin chain, strictly speaking, cannot have Bethe strings of finite size. For example,

the Bethe equations for the one loop anomalous dimension in the SL(2) sector are

(

yj − i/2

yj + i/2

)J

=

S
∏

k 6=j

yj − yk + i

yj − yk − i
. (B.9)

In the limit J → ∞, the left hand side is zero if Im yj > 0. This means that the right hand

side must also be zero, which can be accomplished only if there is also a root at yj + i.

But then replacing by yj by yj + i in the l.h.s. of (B.9) we again end up with a zero, which

means that there is a root at yj + 2i, and the argument continues ad infinitum. Hence,

there are an infinite number of roots in the string and so S is infinite.

When taking the continuum limit, the Bethe equations turn into integral equations

and the Bethe strings become condensates. In the finite gap equations this translates into

condensates of infinite extent. Furthermore, in order for the energies to be real, every

infinite condensate must be paired with its complex conjugate. The finite gap equations

for the SL(2) sector are very similar to the SU(2) equations [38], and, in particular, the

equations in (4.19) are the same with J1 and J2 replaced by S and J . Hence, we find that

for an infinite condensate and its conjugate

S =

∫ +i∞+y0

−i∞+y0

dy ρ(y) −
∫ +i|S|/2+y0

−i|S|/2+y0

dy ρ(y) . (B.10)

The first integral is infinite if ρ = −i along the path. However, if we deform the contour

slightly the integral will be zero, since ρ only has a double pole at infinity. Hence we find

Sreg = −|Sreg|. Likewise,

(E − J)reg = Sreg − 2g2

∫ +i|S|/2+y0

−i|S|/2+y0

dy
ρ(y)

y
√

y2 − 2g2 + y2 − 2g2
. (B.11)

We solve for y0 the same way as in section 4.3 and then (B.11) immediately gives (B.8).
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The same result can be derived for the SL(2) sector from the discrete asymptotic

BDS-type Bethe equations in [42, 43]. The arguments work in almost the same way as for

the SU(2) sector as discussed in section 4. In this case the Bethe equations become

(

x−j
x+

j

)J

=

S
∏

k 6=j

yj − yk + i

yj − yk − i







1 − g2

2x−
j x+

k

1 − g2

2x+
j x−

k







2

, (B.12)

where x±j = x(yj ± i/2). Hence, as in the one-loop case if Im yj > 0, then there must be a

root at yj + i. Hence, the Bethe string goes on forever in the imaginary direction. In order

to have real solutions, we require that there also be the complex conjugate of this Bethe

string. In any case, one now finds that

(E − J)reg − Sreg = ig2
∞
∑

j=1

(

1

x(y0 + i|Sreg|/2 + ij)
− 1

x(y0 + i|Sreg|/2 + ij − i)

)

+ig2
∞
∑

j=1

(

1

x(y0 − i|Sreg|/2 − ij + i)
− 1

x(y0 − i|Sreg|/2 + ij)

)

= −ig2

(

1

x(y0 + i|Sreg|/2)
− 1

x(y0 − i|Sreg|/2)

)

. (B.13)

This then leads to (B.8).

The negative sign in front of the square root in (B.8) may seem puzzling, so let us try

to give a possible interpretation of this configuration on the gauge side. The divergence

of S and E − J is due to the string going out to the boundary of AdS5. This suggests

that we have inserted a localized adjoint gauge source, in other words, a Wilson line in

the adjoint representation along a particular trajectory of the gauge theory. The infinite

value for E−J can then be interpreted as the infinite contribution coming from a source of

infinite mass, as was the case for the quark-antiquark configuration in [39, 40]. Likewise, if

the source is moving along the boundary, it will have infinite angular momentum if it has

infinite mass. The regularization then corresponds to subtracting off this infinite energy

and angular momentum and the resulting finite E − J and S are the contributions of the

operators in the presence of these sources. If one thinks of the boundary theory as being

defined on R × S3, then the allowed states must be color singlets on S3. Hence, if an

adjoint source is inserted somewhere on the S3, this must bind onto states such that the

net color is zero.19 With the background color source, we see no violation of the usual

supersymmetry arguments that normally enforce E ≥ J .

19Let us note that in the Poincare coordinates in AdS5 with the metric ds2 = R2

z2 (−dt2+dr2+r2dθ2+dz2),

the above solution has the form:

z =
R sin ϕ

sin ϕ0 cos t
, t = R tan t, r2 = (R2 + t2)(1 − sin2 ϕ

sin2 ϕ0
), θ = w arccos(

R√
R2 + t2

) .

The boundary is at z = 0 which occurs at ϕ = 0. Here t is the global time and t refers to the Poincare

patch time. The trajectory at the boundary has the source coming in from infinity and reaching a minimum

distance R at t = 0. In the meantime its angle changes between −wπ

2
and +wπ

2
(as w approaches 1 the

trajectory approaches a lightlike straight line).
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Note that the circular SL(2) solution discussed in appendix B is not made up of

magnons of this type. Instead, the circular solution has a single cut shrinking to zero

size along the real axis, which contrasts with the SU(2) case where it is a cut along

the imaginary direction that is shrinking. But the bound magnons correspond to roots

extended along the imaginary direction, and so, unlike the SU(2) case, it is not possible

to see the SL(2) circular solution emerging as a limiting case of bound magnons.
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